Case Based Representation and Retrieval with Time Dependent Features
نویسندگان
چکیده
The temporal dimension of the knowledge embedded in cases has often been neglected or oversimplified in Case Based Reasoning systems. However, in several real world problems a case should capture the evolution of the observed phenomenon over time. To this end, we propose to represent temporal information at two levels: (1) at the case level, if some features describe parameters varying within a period of time (which corresponds to the case duration), and are therefore collected in the form of time series; (2) at the history level, if the evolution of the system can be reconstructed by retrieving temporally related cases. In this paper, we describe a framework for case representation and retrieval able to take into account the temporal dimension, and meant to be used in any time dependent domain. In particular, to support case retrieval, we provide an analysis of similarity-based time series retrieval techniques; to support history retrieval, we introduce possible ways to summarize the case content, together with the corresponding strategies for identifying similar instances in the knowledge base. A concrete application of our framework is represented by the system RHENE, which is briefly sketched here, and extensively described in [20].
منابع مشابه
Image Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix
In this article, a fabulous method for database retrieval is proposed. The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملClustering of nasopharyngeal carcinoma intensity modulated radiation therapy plans based on k-means algorithm and geometrical features
Background: The design of intensity modulated radiation therapy (IMRT) plans is difficult and time-consuming. The retrieval of similar IMRT plans from the IMRT plan dataset can effectively improve the quality and efficiency of IMRT plans and automate the design of IMRT planning. However, the large IMRT plans datasets will bring inefficient retrieval result. Materials and Methods: An intensity-m...
متن کاملProviding Case-Based Retrieval as a Decision Support Strategy in Time Dependent Medical Domains
Case-based Reasoning (CBR), and more specifically casebased retrieval, is recently being recognized as a valuable decision support methodology in “time dependent” medical domains, i.e. in all domains in which the observed phenomenon dynamics have to be dealt with. However, adopting CBR in these applications is non trivial, since the need for describing the process dynamics impacts both on case ...
متن کاملAccounting for the Temporal Dimension in Case-Based Retrieval: A Framework for Medical Applications
Time-varying information embedded in cases has often been neglected and its role oversimplified in case-based reasoning systems. In several real-world problems, and in particular in medical applications, a case should capture the evolution of the observed phenomenon over time. To this end, we propose to represent temporal information at two levels: (1) at the case level, when some features are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005